AQA Chemistry Unit 2 Bonding Summary

  • Created by: Myrty
  • Created on: 31-05-16 12:28

Atomic Structure

Atoms are made of protons, neutrons and electrons. Protons and neutrons are found in the nucleus, and electrons in shells.


Each one has a different charge:

Protons: +

Neutrons: 0

Electrons: -

1 of 11

Using the Periodic Table

Each element on the periodic table will have two numbers on them. The one on the bottom will be the atomic number. This tell you the number of protons the element has, which also tells you the amount of electrons in an element with no charge as the number of proton is equal to the number of electrons.

The top number is the mass number. The mass number is equal to the amount of protons + neutrons, so to get the amount of neutrons, take away the atomic number from the mass number.

For example, flourine has a mass number of 19 and an atomic number of 9. How many electrons protons, and neutrons does it have? 

We can see the amount of electrons and protons from the atomic number. The amount of neutrons will be 19. So, it has 9 protons, 9 electrons, and 10 neutrons.

You can also see how many rings an element will have in it's electronic structure by looking at the row it is in, and how many electrons it will have on the outer shell by looking at the group it is in. (Flourine will have 2 rings, and 7 electrons on the outer shell

2 of 11

Ionic Bonding

Ionic bonding - the transfer of electrons from a metal to a non metal resulting in the formation of - and + ions (charged atoms) It is shown using dot and cross diagrams. An example of this is aluminium oxide.

Positive ions are formed when a metal loses electrons, and negative ions are formed when a non metal gains electrons. This is because electrons have a negative charge.

3 of 11

Ionic Compounds


  • High melting and boiling point because it has a electostatic force which is very strong throughout the lattice which means lots of energy is needed to break it.
  • Only conducts electricity in a solution or melted because the electrostatic force is then weakened and the ions are free to move.


4 of 11

Covalent Bonding

Covalent Bodning - bonding between two non metals. Involves the sharing of at least one pair of electrons. An example of a covalent substance is water, H2O


5 of 11

Covalent Compounds


  • Low melting point because of intermolecular forces which are weak (this is NOT the covalent bond) so only a litte bit of energy is needed to break it.
  • They can't conduct electricity as there are no ions in covalent bonding. This means there are not free electrons to carry electricity.

6 of 11

Metallic Bonding



  • High melting and boiling points because of strong electrostatic attraction between free delocalised electrons (-) and metal ions (+). Lots of energy is needed to break it. 
  • Good conductors because of the free electrons. They can move around and carry heat and electricity
  • Malleable (bendy) because the electrons get in the way. The layers slide over each other without getting too close to each other. 
7 of 11


Metals can be mixed with other metals (and sometimes non metals) to form alloys e.g. pure iron + small amounts of C02 and nickel = stainless steel.

Smart alloys are alloys that can return to their original shape because they have shape memory.

Alloys are stronger and more corrosion resistant. They are less malleable. This is because foreign atoms are different sizes so the layers of metal can't slip over each other.

8 of 11

Giant Covalent Structure - Diamond


  • Strong covalent bonds
  • Each C atom is covalently bonded with 4 bonds
  • Chemically unreactive
  • Hard, atoms can't slide over each other
  • Can't conduct electricity


9 of 11

Giant Covalent Structure - Graphite


  • Contains layers of atoms which can slide (slippery)
  • Hexagonal shape
  • Each C has 3 bonds which lead to delocalised electrons which carry a charge conducts electricity)
  • Weak intermolecular bonds between layers.


10 of 11

Giant Covalent Structure - Fullerenes


  • Lots of C atoms join to form odd shapes, each C has 3 bonds
  • Discovered in 1985
  • Used for drug delivery in the human body, engine lubricants, catalysts, nanotubes fore strengthening tennis rackets.


11 of 11




thanks, this help me remember the lessons very helpful at jogging memory



very good best revision website

Ashley Hamilton


spelling mistake on card number 6



so useful! it helps a lot and is a great guide for the basics, it has enough room to add extra info on but for triple 9-1 spec you need some extra info that's missing but its easy to add it on 

Similar Chemistry resources:

See all Chemistry resources »See all Structure and bonding resources »