HideShow resource information
  • Created by: Clare
  • Created on: 21-02-13 18:28
View mindmap
  • Metals
    • Metal= giant stricture of positive ions surrounded by a sea of delocalised electrons
    • 5.1 explain how the methods of extraction of the metals in this section are related to their positions in the reactivity series 5.2 describe and explain the extraction of aluminium from purified aluminium oxide by electrolysis, including: i the use of molten cryolite as a solvent and to decrease the required operating temperature ii the need to replace the positive electrodes iii the cost of the electricity as a major factor 5.3 write ionic half-equations for the reactions at the electrodes in aluminium extraction 5.4 describe and explain the main reactions involved in the extraction of iron from iron ore (haematite), using coke, limestone and air in a blast furnace 5.5 explain the uses of aluminium and iron, in terms of their properties.
    • Reactivity Series
      • 2.29 understand that metals can be arranged in a reactivity series based on the reactions of the metals and their compounds: potassium, sodium, lithium, calcium, magnesium, aluminium, zinc, iron, copper, silver and gold 2.30 describe how reactions with water and dilute acids can be used to deduce the following order of reactivity: potassium, sodium, lithium, calcium, magnesium, zinc, iron and copper 2.31 deduce the position of a metal within the reactivity series using displacement reactions between metals and their oxides, and between metals and their salts in aqueous solutions 2.32 understand oxidation and reduction as the addition and removal of oxygen respectively 2.33 understand the terms redox, oxidising agent, reducing agent 2.34 describe the conditions under which iron rusts 2.35 describe how the rusting of iron may be prevented by grease, oil, paint, plastic and galvanising 2.36 understand the sacrificial protection of iron in terms of the reactivity series.
    • Alloys


No comments have yet been made

Similar Chemistry resources:

See all Chemistry resources »See all Rocks, ores, metals and alloys resources »