Maths Revision! -Algebra

HideShow resource information
  • Created by: Livviemt
  • Created on: 12-03-16 16:32

Unit 2: Algebra

Use the rules of indices to simplify algebraic expressions

An index number, or a power, is the small floating number that goes next to a number or letter. The plural of index number is indices. Index numbersshow how many times a number or letter has been multiplied by itself.

Multiplying Indicies

Simplify Equation: c^3 times c^2 (

To answer this question, write Equation: c^3 ( and Equation: c^2 ( out in full: Equation: c^3 = c times c times c ( andEquation: c^2 = c times c (

Writing the indices out in full shows that Equation: c^3 times c^2 ( means Equation: c ( has now been multiplied by itself 5 times. This meansEquation: c^3 times c^2 ( can be simplified to Equation: c^5 (

Dividing Indicies

Expand brackets.

Expanding brackets involves removing the brackets from an expression by multiplying out the brackets.

Example 1 - Expanding a single pair of brackets

a) Expand: 3(x+6)3(x+6).

a) Remember to multiply every term inside the brackets by the term outside:


Example 2 - Expanding and simplifying brackets

a) Expand and simplify 2(3x+4)+4(x1)2(3x+4)+4(x−1).

Multiply each bracket out first, then collect the like terms:


Example 3 - Expanding double brackets

Expand and simplify (a+b)(c+d)(a+b)(c+d).

When multiplying out double brackets, each terms in the first bracket must be multiplied by each term in the second:


Example 4 - Expanding and simplifying quadratic expressions

a) Expand and simplify (x+4)(x+3)(x+4)(x+3).

When multiplying xx by another xx you will end up with an x2x2 term:


Factorise algebraic expressions.

Factorise the expression: c2- 3c - 10

Write down the expression: c2- 3c - 10

Remember that to factorise an expression we need to look for common factor pairs. In this example we are looking for two numbers that:

  • multiply to give -10
  • add to give -3

Think of all the factor pairs of -10:

  • 1 and -10
  • -1 and 10
  • 2 and -5
  • -2 and 5

Which of these factor pairs can be added to get -3?

Only 2 + (-5) = -3

So the answer is:

c2 - 3c - 10 = (c + 2)(c - 5)

Factorising the difference of two squares

Factorise: x2 - 4

x2 - 4 = (x + 2)(x – 2)

Factorise: x2 -


No comments have yet been made

Similar Mathematics resources:

See all Mathematics resources »See all Algebra resources »