Math Session 2 Test Study Guide

HideShow resource information

I. Irrational Numbers A. Subsets Irrational Number Set (   ) is the universal set. 1. Counting Numbers/Natural Number Set     {1,2,3,4,5,6...} 2. Whole Numbers Set - basically it is the natural number set + 0     {0,1,2,3,4,5,6...} 3. Set of Integers     {-3,-2,-1,0,1,2,3...} 4. Rational Number Set - written in fraction form or a/b but a and b are integers and b can't be 0. - terminating or repeating decimals.     {0.125, 0.33, 0.66} 5. Irrational Number Set - non terminating and non repeating decimals     {   ,    ,    ,    ,    ,}                                   B. Operations C. Properties 1. Commutative Property a.) in Addition  -changing the order of the addends doesn't change the sum a+b=b+a c=c Ex: 2+3=3+2 b.) in Multiplication - changing the order of the factors doesn't change the product ab=ba Ex: 1/2 x 4 = 4 x 1/2 2. Identity Property a.) in Addition - when we add 0 to a number, the sum is still its original number - zero is the additive identity element of the irrational number set a+0=a     Ex:15+0=15 b.) Multiplication - when we multiply 1 to a number, the product is still the original number - one is the multiplicative identity element of the irrational number set a (1) = a Ex: 512 x 1 = 512 3. Closure Property a.) in Addition  - if the addends are elements of the irrational number set, then their sum is also an element of the irrational number set   Ex: 0.50+3/4= 1.25 1.25 is an element of the irrational…


No comments have yet been made

Similar Mathematics resources:

See all Mathematics resources »See all Math Session 2 Test resources »