The Structure of the Heart

HideShow resource information

The Heart


The human heart has four chambers: two thin-walled atria on top, which receive blood, and  two thick-walled ventricles underneath, which pump blood. Veins carry blood into the atria and arteries carry blood away from the ventricles. Between the atria and the ventricles are atrioventricular valves, which prevent back-flow of blood from the ventricles to the atria. The left valve has two flaps and is called the bicuspid (or mitral) valve, while the right valve has 3 flaps and is called the tricuspid valve. The valves are held in place by valve tendons (“heart strings”) attached to papillary muscles, which contract at the same time as the ventricles, holding the vales closed. There are also two semi-lunar valves in the arteries (the only examples of valves in arteries) called the pulmonary and aortic valves.

The left and right halves of the heart are separated by the inter-ventricular septum. The walls of the right ventricle are 3 times thinner than on the left and it produces less force and pressure in the blood. This is partly because the blood has less far to go (the lungs are right next to the heart), but also because a lower pressure in the pulmonary circulation means that less fluid passes from the capillaries to the alveoli.

The heart is made of cardiac muscle, composed of cells called myocytes. When myocytes receive an electrical impulse they contract together, causing a heartbeat. Since myocytes are constantly active, they have a great requirement for oxygen, so are fed by numerous capillaries from two coronary arteries. These arise from the aorta as it leaves the heart. Blood returns via the coronary sinus, which drains directly into the right atrium.

The Cardiac Cycle  

( the cardiac muscle contracts the volume in the chamber decrease, so the pressure in the chamber increases, so the blood is forced out. Cardiac muscle contracts about 75 times per minute, pumping around 75 cm³ of blood from each ventricle each beat (the stroke volume). It does this continuously for up to 100 years. There is a complicated sequence of events at each heartbeat called the cardiac cycle.

Cardiac muscle is myogenic, which means that it can contract on its own, without needing nerve impulses. Contractions are initiated within the heart by the sino-atrial node (SAN, or pacemaker) in the right atrium. This extraordinary tissue acts as a clock, and contracts spontaneously and rhythmically about once a second, even when surgically removed from the heart.

The cardiac cycle has three stages:

1.     Atrial Systole (pronounced sis-toe-lay). The SAN contracts and transmits electrical impulses throughout the atria, which both contract, pumping blood into the ventricles. The ventricles are electrically insulated from the atria, so they do not contract at this time.

2.     Ventricular Systole. The electrical impulse passes to the ventricles via the atrioventricular node (AVN), the bundle of His and the Purkinje fibres.


No comments have yet been made

Similar Biology resources:

See all Biology resources »See all resources »