- Cubic functions has an x^3 term in them - as the highest power of x.
- They can be written as y=ax^3 + bx^2 + cx + d (for when a is not 0)
- All the cubic graphs have a characteristic 'wiggle'

- y = x^3 - a positive coefficient of x^3 gives a 'bottom-left to top-right' shape.
- y = -x^3 - a negative coefficient of x^3 gives a 'top-left to bottom-right' shape.

Both of these graphs 'flattern out' at the point when the curve starts bending the other way.

- y= x^3 = x^2 - if the cubic has x^2 terms there'll be more of a 'wiggle'.
- y=5+x-x^2-x^3 - you can tell that this graph has a negative x^3 term because it's got the 'top-left to bottom-right' shape.

- May need to sketch cubics - find where the graph crosses the axes (particularly the x-axis).

## Comments

No comments have yet been made